69 research outputs found

    Developing a Biosensor for the Detection of Bacteria: A Comparison of Methods for Isolating Bacteria-Specific Antibodies

    Get PDF
    The antigen-antibody interaction is known to be a high affinity and highly specific interaction that can readily be used for the detection and identification of biological and chemical agents. These studies were conducted to develop an efficient and cost-effective method of obtaining bacteria-specific antibody molecules for integration into a fielddeployable biosensor. Antigen-binding molecules were obtained both as full-length IgG molecules from a hybridoma cell line and as recombinant single-chain Fv (scFv) antibodies isolated from naïve and immunize libraries. Monoclonal and recombinant antibody systems were compared on the effectiveness of producing new, target-specific molecules; the efficiency of production and purification of these molecules; and the success/failure of integrating the molecules into the QCM biosensor for bacterial detection. Although selection of individual hybridoma cell lines was not conducted, monoclonal antibodies (mAbs) were obtained from an established cell line maintained in a hollow-fiber bioreactor. Recombinant antibodies, scFvs, capable of binding bacterial targets were isolated from libraries using a high-throughput phage display method of selection. Protocols were established for the purification of monoclonal antibodies from the bioreactor serum and scFvs from bacterial cell cultures to assess the efficiency of readily obtaining antibodies for integration into the biosensor. Finally, methods of immobilizing antibodies and scFvs to the gold electrode of a standard QCM crystal were explored to determine suitable procedures for consistent detection of target bacteria in aqueous samples to the lowest limit of detection

    Directed Protein Packaging within Outer Membrane Vesicles from Escherichia coli: Design, Production and Purification

    Get PDF
    A protocol for the production, purification, and use of enzyme packaged outer membrane vesicles (OMV) providing for enhanced enzyme stability for implementation across diverse applications is presented

    Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    Get PDF
    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L−1

    Response of Lactobacillus plantarum WCFS1 to the Gram-Negative Pathogen-Associated Quorum Sensing Molecule N-3-Oxododecanoyl Homoserine Lactone

    Get PDF
    The bacterial quorum sensing phenomenon has been well studied since its discovery and has traditionally been considered to include signaling pathways recognized exclusively within either Gram-positive or Gram-negative bacteria. These groups of bacteria synthesize structurally distinct signaling molecules to mediate quorum sensing, where Gram-positive bacteria traditionally utilize small autoinducing peptides (AIPs) and Gram-negatives use small molecules such as acyl-homoserine lactones (AHLs). The structural differences between the types of signaling molecules have historically implied a lack of cross-talk among Gram-positive and Gram-negative quorum sensing systems. Recent investigations, however, have demonstrated the ability for AIPs and AHLs to be produced by non-canonical organisms, implying quorum sensing systems may be more universally recognized than previously hypothesized. With that in mind, our interests were piqued by the organisms Lactobacillus plantarum, a Gram-positive commensal probiotic known to participate in AIP-mediated quorum sensing, and Pseudomonas aeruginosa, a characterized Gram-negative pathogen whose virulence is in part controlled by AHL-mediated quorum sensing. Both health-related organisms are known to inhabit the human gut in various instances, both are characterized to elicit distinct effects on host immunity, and some studies hint at the putative ability of L. plantarum to degrade AHLs produced by P. aeruginosa. We therefore wanted to determine if L. plantarum cultures would respond to the addition of N-(3-oxododecanoyl)-L-homoserine lactone (3OC12) from P. aeruginosa by analyzing changes on both the transcriptome and proteome over time. Based on the observed upregulation of various two-component systems, response regulators, and native quorum sensing related genes, the resulting data provide evidence of an AHL recognition and response by L. plantarum

    Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates

    Get PDF
    Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here, we report a graphene-based electrode developed via inkjet maskless lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML-printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ∼25 nm) to improve its electrical conductivity (sheet resistance decreased from ∼10 000 to 100 Ω/sq), surface area, and electroactive nature for subsequent enzyme functionalization and biosensing. The enzyme phosphotriesterase (PTE) was conjugated to the electrode surface via glutaraldehyde cross-linking. The resulting biosensor was able to rapidly measure (5 s response time) the insecticide paraoxon (a model OP) with a low detection limit (3 nM), and high sensitivity (370 nA/μM) with negligible interference from similar nerve agents. Moreover, the biosensor exhibited high reusability (average of 0.3% decrease in sensitivity per sensing event), stability (90% anodic current signal retention over 1000 s), longevity (70% retained sensitivity after 8 weeks), and the ability to selectively sense OP in actual soil and water samples. Hence, this work presents a scalable printed graphene manufacturing technique that can be used to create OP biosensors that are suitable for in-field applications as well as, more generally, for low-cost biosensor test strips that could be incorporated into wearable or disposable sensing paradigms

    Artificial Multienzyme Scaffolds: Pursuing in Vitro Substrate Channeling with an Overview of Current Progress

    Get PDF
    Artificial multienzyme scaffolds are being developed for in vitro cascaded biocatalytic activity and, in particular, accessing substrate channeling. This review covers progress in this field over t..

    A Fully-Flexible Solution-Processed Autonomous Glucose Indicator

    Get PDF
    We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration. Our indicator was shown to operate at high sensitivity within a linear glucose concentration range of 1 mM-45 mM glucose continuously, achieving a 1.8 VDC output from a flexible indicator system that deliver sufficient power to drive an LED circuit. Importantly, the results presented provide a basis upon which further development of indicator systems with biocompatible diffusing polymers to act as buffering diffusion barriers, thereby allowing them to be potentially useful for low-cost, direct-line-of-sight applications in medicine, husbandry, agriculture, and the food and beverage industries

    Llama-Derived Single Domain Antibodies Specific for Abrus Agglutinin

    Get PDF
    Llama derived single domain antibodies (sdAb), the recombinantly expressed variable heavy domains from the unique heavy-chain only antibodies of camelids, were isolated from a library derived from llamas immunized with a commercial abrin toxoid preparation. Abrin is a potent toxin similar to ricin in structure, sequence and mechanism of action. The selected sdAb were evaluated for their ability to bind to commercial abrin as well as abrax (a recombinant abrin A-chain), purified abrin fractions, Abrus agglutinin (a protein related to abrin but with lower toxicity), ricin, and unrelated proteins. Isolated sdAb were also evaluated for their ability to refold after heat denaturation and ability to be used in sandwich assays as both capture and reporter elements. The best binders were specific for the Abrus agglutinin, showing minimal binding to purified abrin fractions or unrelated proteins. These binders had sub nM affinities and regained most of their secondary structure after heating to 95 °C. They functioned well in sandwich assays. Through gel analysis and the behavior of anti-abrin monoclonal antibodies, we determined that the commercial toxoid preparation used for the original immunizations contained a high percentage of Abrus agglutinin, explaining the selection of Abrus agglutinin binders. Used in conjunction with anti-abrin monoclonal and polyclonal antibodies, these reagents can fill a role to discriminate between the highly toxic abrin and the related, but much less toxic, Abrus agglutinin and distinguish between different crude preparations

    Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant

    Get PDF
    To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function
    • …
    corecore